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An analytical approach for the determination of the luminosity distance
in a flat universe with dark energy
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ABSTRACT
Recent cosmological observations indicate that the present universe is flat and dark energy
dominated. In such a universe, the calculation of the luminosity distance, dL, involves repeated
numerical calculations. In this paper, it is shown that a quite efficient approximate analytical
expression, having very small uncertainties, can be obtained for dL. The analytical calculation
is shown to be exceedingly efficient, as compared to the traditional numerical methods, and is
potentially useful for Monte Carlo simulations involving luminosity distances.
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1 IN T RO D U C T I O N

The most recent cosmological observations indicate that the present
universe is flat and vacuum dominated (Komatsu et al. 2009). In
such a vacuum-dominated space–time, the distance analysis re-
quires computer-intensive numerical calculations. Even though to-
day’s computers are very fast, efficient analytical calculation of
distance scales would be very useful for various types of Monte
Carlo simulations.

The most fundamental distance scale in the universe is the lumi-
nosity distance, defined by dL =√

L/(4πf ), where f is the observed
flux of an astronomical object and L is its luminosity. Current astro-
nomical observations indicate that the present density parameter of
the universe satisfies �� +�M = 1 with �� ∼ 0.7. Here, �� is the
contribution from the vacuum and �M is the contribution from all
other fields. The distance calculations in such a vacuum-dominated
universe involve repeated numerical calculations and elliptic func-
tions (Eisenstein 1997).

In order to simplify the numerical calculations, Pen (1999, here-
after Pen99) has developed quite an efficient analytical recipe. In
this paper, we show another analytical method, similar in many re-
spects to that of Pen99, that can be used to calculate the distances
in a vacuum-dominated flat universe.

Our analytical calculation is shown to run faster than that of
Pen99 and has smaller error variations with respect to redshift (z)
and ��.

Our recipe for calculating the luminosity distance is as follows
(H0 is the present Hubble constant and c is the speed of light):

dL = c

3H0

1 + z

�
1/6
� (1 − ��)1/3

[�(x(0,��)) − �(x(z,��))], (1)
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�(x) = 3 x1/32 2/3

[
1 − x2

252
+ x4

21 060

]
, (2)

x = x(z, ��) = ln(α +
√

α2 − 1), (3)

α = α(z,��) = 1 + 2
��

1 − ��

1

(1 + z)3
. (4)

2 A PPROX IMATION

We first begin by analysing how the scalefactor, a(t), varies as a
function of time t in a flat universe in which �� �= 0. In this case,
a(t) is given by (Weinberg 2008)

ȧ2 = H 2
0 ��a2 + H 2

0 �m
a3

0

a
, (5)

where a0 is the present value of the scalefactor. The above equation
is then immediately integrated into(

a

a0

)3

= 1

2

�m

��

[
cosh(3H0t

√
��) − 1

]
. (6)

The scalefactor is directly related to z as

a

a0
= 1

1 + z
. (7)

Let us define x = 3H0t
√

�� and indicate its present value by
x0 = x(0, ��). Then, equations (6) and (7) give

x = x(z, ��) = cosh−1

[
1 + 2

��

1 − ��

1

(1 + z)3

]
. (8)
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If we define α as

α = α(z,��) = 1 + 2
��

1 − ��

1

(1 + z)3
(9)

and since α > 1, we can write x as

x = x(z, ��) = ln(α +
√

α2 − 1). (10)

We note that x is a monotonically decreasing function beyond
x(0, 0.7) = 2.42.

We choose the standard Robertson–Walker metric (Weinberg
2008) as the metric of the background space–time. With usual no-
tation, this is

ds2 = c2dt2 − a2

[
dr2

1 − kr2
+ r2(dθ 2 + sin2 θ dφ2)

]
. (11)

In the above space–time, we can use equation (5) to obtain r. A
straightforward integration for a flat universe (k = 0) yields

r = c

a0H0

1

3�
1/6
� �

1/3
M

∫ x0

x

dx ′[
sinh x′

2

]2/3 . (12)

This integral can be evaluated in terms of hypergeometric func-
tions and related elliptic integrals. But here we take a simple, alter-
native approach by defining a new function

�(x) = lim
δ→0

∫ x

δ

dx ′[
sinh x′

2

]2/3 . (13)

In the standard model, the luminosity distance is defined as dL =
a0r(1 + z). Now we can use equation (13) to write the luminosity
distance as

dL = c

3H0

1 + z

�
1/6
� �

1/3
M

[�(x0) − �(x)]. (14)

Expanding � in a series expansion to the fourth order, we find
that

�(x) = 3 x1/32 2/3

[
1 − x2

252
+ x4

21 060

]
+ �(0), (15)

where �(0) = −2.210. Now, equation (14) reduces to the required
expression for the luminosity distance as

dL = c

3H0

1 + z

�
1/6
� (1 − ��)1/3

[�(x0) − �(x)]. (16)

Figure 1. The absolute relative percentage error (
E) as a function of the
redshift for �� = 0.7.

3 A NA LY S I S A N D C O N C L U S I O N

In order to compare the method of Pen99 to ours, let us define the
absolute relative percentage error as follows:


E =
∣∣dapprox

L − dnum
L

∣∣
dnum

L

× 100 per cent. (17)

Here d
approx
L and dnum

L are luminosity distance values calculated from
approximate analytical methods and the numerical method, respec-
tively.

A comparison of 
E for both analytical methods for �� = 0.7 is
shown in Fig. 1. Our method has a better absolute relative percentage
error value for z < 1.0, 1.6 < z < 5.5 and z > 8.0 compared
to that of Pen99. We note that the error in our method decreases
steadily with redshift approaching <0.014 per cent at z = 1100.
In comparison, for high redshifts, the Pen99 error always stays
∼0.09 per cent and does not decrease appreciably.

A contour plot of 
E based on the method of Pen99 with various
z and �� is shown in Fig. 2 . A relatively complicated distribution of
variations in 
E can be seen for the parameter space characterized
by z and ��. However, a contour plot of 
E for our method,
which is shown in Fig. 3 , shows a smooth behaviour over the same
parameter space.

Figure 2. Contour plot of the absolute relative percentage error (
E) for
the method of Pen99 with various z and ��.

Figure 3. Contour plot of the absolute relative percentage error (
E) for
our method with various z and ��.
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Figure 4. Histogram of running times of both Pen99 and our methods.

In order to investigate the running time of the two analytical
methods, we performed the following test. With z = 1 and �� =
0.7, we calculated the running time for one million calculations on a
typical personal computer (Intel Core 2 Processor, 2127 MHz, 1 GB
RAM, IDL1 Version 6.2 running on Windows XP Service Pack 3).

1 Interactive Data Language, http://www.ittvis.com/ProductServices/IDL.
aspx.

Then we repeated the above process 100 times for the both methods.
The histogram of both running time results is shown in Fig. 4. Our
method is significantly faster than that of Pen99. In addition, we
performed the same test on the numerical method and found that
our method is more than an order of magnitude faster. However, we
note that the above test is hardware and compiler dependent and
results may vary depending on the hardware and the compiler used.

With less than 0.1 per cent error, our analytical method becomes
quite desirable as the most interesting astronomical phenomena
happen at z > 1 (�� ∼ 0.7). Furthermore, the analytical compu-
tation is more elegant and faster compared to traditional numerical
computations invoked in connection with calculations of distances
in a vacuum-dominated flat universe.

Once we know the luminosity distance, it becomes a simple
matter to evaluate the other distances such as the angular diameter
distance or the proper distance.
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